

NPOI Line of Sight Control Experiments

8-July-97

Alan L. Duncan 415-354-5657 alan.duncan@lmco.com

Key Drivers for Future Imaging Systems

Next Generation Space based Imaging Systems

MultiAp Risk Reduction Experiments Objectives

- Demonstrate performance of wavefront tilt control loop
 - wavefront aberrations due to relative tilt errors between collector telescope / optical delay line paths at the beam combiner entrance pupil
- Demonstrate image stabilization control loop
 - dynamic, global line of sight errors resulting in image motion at the primary focal plane
- Demonstrate active line of sight pointing
 - absolute line of sight errors resulting in a lack of knowledge of the scene location (does not effect image quality)

Navai i rototype Optical Interferometer

MultiAp

Perform full scale demonstrations at a ground field site (NPOI) which has similar hardware configuration and function as MultiAp

5

MultiAp Alignment Beam SourceAssembly

NPOI Alignment Beam Source Assembly

NPOI Tilt Sensor Assembly

NPOI and MultiAp tilt control system

SINGLE TELESCOPE CONTROL SYSTEM BLOCK DIAGRAM

Fast Steering Mirror (FSM) Design

- Flexure mounted mirror, reactionless design
 - Very good dynamic range of up to 2 deg
- Voice coil type electromechanical actuators
- Kaman proximity sensors for base reference (pointing) control loop mode
 - Kaman sensors seem to be poor quality (unknown exactly which model is used)
- Quad cell sensors and Lockheed built sensor electronics used for optical (tracking) control loop mode
 - These sensors and electronics are good to about 20 kHz
- Calibration performed with a Kern theodolite
 - Optical loop scale factor was very dependent on red beam spot size and quality
 - Scale factors also dependent on electronics gain (used to adjust loop bandwidth)
- Continued on next chart

Fast Steering Mirror (FSM) Design

- Servo is type two with a lead-lag network providing a maximum of 60 deg phase margin somewhere near 300 Hz
 - Servo design needs work
 - Compensation is different for each axis of each mirror
 - Same compensation is used for both base reference and optical loop modes
 - Undesirable poles in Kaman sensor response at 2000 Hz limits the bandwidth of the base reference loop and therefor the optical loop
 - Servo has inadequate phase margin at crossover so startup transients can cause unstable oscillations
 - Automatic switching between base reference and optical modes works well
 - Servo electronics have large residual biases of up to 300 mV
 - Kaman sensor calibration was incorrect and rework was necessary to obtain correct calibration of approximately 1 mrad/Volt
 - Separate servo compensation for the optical mode would fix most of the problems. If they were
 my mirrors I'd fix up the servo electronics for future use.
 - In defense of the supplier, he did deliver two pretty good FSMs in a relatively fast time and low cost

FSM Optical Mode Calibration

West Hut FSM

East Hut FSM

OTHER SCALE FACTORS OF INTEREST

- Output space / Compact space = 1/3.57
- Red Beam motion / FSM Mirror motion Azimuth: 1.4 Elevation: 2.0
- Green Beam Scale Factor = 2.3µrad / Volt

East, West Aperture LOS (red beam) Open and Closed loop (100 sec each)

Red is open loop, Blue is closed loop

East, West Aperture LOS (red beam) Closed Loop Only (100 sec)

• This slide shows better the residual LOS jitter time history

East Hut Closed Loop results

Summary

- Demonstrated closed loop image stabilization to better than 10 nrads rms for two independent optical telescopes and delay lines
 - 1 inch stabilized alignment beam
 - quad cell tilt sensor
 - feedback to high bandwidth FSM
 - 100 m path length
 - approximately 20 reflections
 - few µrad rms input jitter spectrum
- Performance for space based system expected to be limited by the jitter on the alignment beam
 - IPSRU measured performance: 40 nrads rms (Draper Labs)

Active Line of Sight Control Using Stabilized Reference Beam Demonstrated; Key Enabling Technology for Deployed NGST Concept